
بسم االله الرحمن الرحيم

Advanced Computer Architecture
Chapter 4: Processor and pipline

Teacher

Fatemeh Daraee

f_daraei@semnan.ac.ir

https://fdaraei.profile.semnan.ac.ir

1

2

Introduction
CPU performance factors

•Instruction count
•Determined by ISA and compiler

•CPI and Cycle time
•Determined by CPU hardware

We will examine two MIPS implementations
•A simplified version
•A more realistic pipelined version

Simple subset, shows most aspects
•Memory reference: lw, sw
•Arithmetic/logical: add, sub, and, or, slt
•Control transfer: beq, j

MIPS Instruction Format

3

I-type

J-type

Instruction Execution

PC → instruction memory, fetch instruction

Register numbers → register file, read registers

Depending on instruction class:
• Use ALU to calculate:

• Arithmetic result
• Memory address for load/store
• Branch target address

• Access data memory for load/store
• PC ← target address or PC + 4

4

CPU Overview

5

Multiplexers

6

Control

7

Building a Datapath

Datapath

• Elements that process data and addresses in the CPU

• Registers, ALUs, mux's, memories, …

• We will build a MIPS datapath incrementally

• Refining the overview design

8

Instruction Fetch

9

R-Format Instructions

• Read two register operands

• Perform arithmetic/logical operation

• Write register result

10

Load/Store Instructions
•Read register operands
•Calculate address using 16-bit offset

•Use ALU, but sign-extend offset
•Load: Read memory and update register
•Store: Write register value to memory

11

Branch Instructions

Read register operands
Compare operands

•Use ALU, subtract and check Zero output

Calculate target address
•Sign-extend displacement
•Shift left 2 places (word displacement)
•Add to PC + 4

•Already calculated by instruction fetch

12

Branch Instructions

13

Composing the Elements

First-cut data path does an instruction in one clock cycle
• Each datapath element can only do one function at a time
• Hence, we need separate instruction and data memories

Use multiplexers where alternate data sources are used for
different instructions

14

R-type/Load/Store/Datapath

15

Full Datapath

16

ALU Control

ALU used for

• Load/Store: F = add

• Branch: F = subtract

• R-type: F depends on funct field

17

ALU Control
Assume 2-bit ALUOp derived from opcode

• Combinational logic derives ALU control

18

The Main Control Unit

• Control signals derived from instruction

19

Datapath with Control

20

R-Type Instructions

21

Load Instructions

22

Branch-on-equal Instruction

23

Implementing Jumps

Jump uses word address

Update PC with concatenation of:
• Top 4 bits of old PC
• 26-bit jump address
• 00

Need an extra control signal decoded from opcode

24

Datapath with Jumps Added

25

Performance Issues

Longest delay determines clock period
• Critical path: load instruction
• Instruction memory → register file → ALU → data memory →

register file

Not feasible to vary period for different instructions

Violates design principle
• Making the common case fast

We will improve performance by pipelining

26

Pipelining Analogy

• Pipelined laundry: overlapping execution

• Parallelism improves performance

27

MIPS Pipeline

• Five stages, one step per stage:
• IF: Instruction fetch from memory
• ID: Instruction decode & register read
• EX: Execute operation or calculate address
• MEM: Access memory operand
• WB: Write result back to register

28

29

Pipeline Performance

• Assume time for stages is:
• 100ps for register read or write
• 200ps for other stages

• Compare pipelined datapath with single-cycle datapath

Pipeline Performance

30

Pipeline Speedup

• If all stages are balanced

• i.e., all take the same time

• If not balanced, speedup is less

• Speedup due to increased throughput
• Latency (time for each instruction) does not decrease

31

Pipelining and ISA Design

MIPS ISA designed for pipelining
• All instructions are 32-bits

• Easier to fetch and decode in one cycle
• c.f. x86: 1- to 17-byte instructions

• Few and regular instruction formats
• Can decode and read registers in one step

• Load/store addressing
• Can calculate address in 3rd stage, access memory in 4th stage

• Alignment of memory operands
• Memory access takes only one cycle

32

Hazards

Situations that prevent starting the next instruction in the
next cycle

• Structure hazards
• A required resource is busy

• Data hazard
• Need to wait for previous instruction to complete its data

read/write
• Control hazard

• Deciding on control action depends on previous instruction

33

Structure Hazards

• Conflict for use of a resource
• In MIPS pipeline with a single memory

• Load/store requires data access
• Instruction fetch would have to stall for that cycle

• Would cause a pipeline “bubble”

• Hence, pipelined datapaths require separate instruction/data
memories

• Or separate instruction/data caches

34

Data Hazards
•An instruction depends on completion of data access by a previous instruction

•add $s0, $t0, $t1
•sub $t2, $s0, $t3

35

Forwarding (aka Bypassing)

• Use result when it is computed
• Don’t wait for it to be stored in a register
• Requires extra connections in the datapath

36

Load-Use Data Hazard

Can’t always avoid stalls by forwarding
• If value not computed when needed
• Can’t forward backward in time!

37

Code Scheduling to Avoid Stall

• Reorder code to avoid use of load result the next instruction

• C code for A = B + E; C = B + F;

38

Control Hazards

• Branch determines flow of control

• Fetching next instruction depends on branch outcome

• Pipeline can’t always fetch correct instruction

• Still working on ID stage of branch

• In MIPS pipeline

• Need to compare registers and compute target early in the pipeline

• Add hardware to do it in ID stage

39

Stall on Branch

• Wait until branch outcome determined before fetching next instruction

40

Branch Prediction

Longer pipelines can’t readily determine branch outcome early
• Stall penalty becomes unacceptable

Predict outcome of branch
• Only stall if prediction is wrong

In MIPS pipeline
• Can predict branches not taken
• Fetch instruction after branch, with no delay

41

MIPS with Predict Not Taken

42

More-Realistic Branch Prediction

Static branch prediction

• Based on typical branch behavior
• Example: loop and if-statement branches

• Predict backward branches taken
• Predict forward branches not taken

Dynamic branch prediction

• Hardware measures actual branch behavior
• e.g., record recent history of each branch

• Assume future behavior will continue the trend
• When wrong, stall while re-fetching, and update history

43

44

Pipeline Summary

Pipelining improves performance by increasing instruction
throughput

• Executes multiple instructions in parallel
• Each instruction has the same latency

Subject to hazards
• Structure, data, control

Instruction set design affects complexity of pipeline
implementation

45

MIPS Pipelined Datapath

46

Pipeline Registers

• Need registers between stages
• To hold information produced in previous cycle

47

Pipeline Operation

•Cycle-by-cycle flow of instructions through the pipelined
datapath

• “Single-clock-cycle” pipeline diagram
• Shows pipeline usage in a single cycle
• Highlights resources used

• c.f. “multi-clock-cycle” diagram
• Graph of operation over time

•We'll look at “single-clock-cycle” diagrams for load & store

48

IF for Load, Store, …

49

ID for Load, Store, …

EX for Load

50

MEM for Load

51

WB for Load

52

WB for Load

53

Corrected Datapath For Load

54

EX For Store

55

MEM For Store

56

WB For Store

57

58

Multi-Cycle Pipeline Diagram

Form showing resource usage

Multi-Cycle Pipeline Diagram

Traditional Form

59

60

Multi-Cycle Pipeline Diagram
• State of pipeline in a given cycle

Pipeline Control

61

Pipelined Control

Control signals derived from instruction

As in single-cycle implementation

62

Pipeline Control

63

Data Hazards in ALU Instructions

Consider this sequence:

We can resolve hazards with forwarding

• How do we detect when to forward?

64

Dependencies and Forwarding

65

66

Detecting the Need to Forward

• Pass register numbers along pipeline
• e.g., ID/EX.RegisterRs = register number for Rs sitting in ID/EX pipeline

register

• ALU operand register numbers in EX stage are given by
• ID/EX.RegisterRs, ID/EX.RegisterRt

• Data hazards when

Detecting the Need to Forward

•But only if forwarding instruction will write to a
register!
• EX/MEM.RegWrite, MEM/WB.RegWrite

•And only if Rd for that instruction is not $zero
• EX/MEM.RegisterRd ≠ 0,
• MEM/WB.RegisterRd ≠ 0

67

Forwarding Path

68

69

Forwarding Conditions

EX hazard

• if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0) and (EX/MEM.RegisterRd =
ID/EX.RegisterRs))
ForwardA = 10

• if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0) and (EX/MEM.RegisterRd =
ID/EX.RegisterRt))
ForwardB = 10

MEM hazard

• if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0) and (MEM/WB.RegisterRd
= ID/EX.RegisterRs))
ForwardA = 01

• if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0) and (MEM/WB.RegisterRd
= ID/EX.RegisterRt))
ForwardB = 01

Double Data Hazard

• Consider the sequence

• add $1, $1, $2

• add $1, $1, $3

• add $1, $1, $4

• Both hazards occur
• Want to use the most recent

• Revise MEM hazard condition
• Only forward if EX hazard condition isn’t true

70

Revised Forwarding Condition

MEM hazard

• if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
ForwardA = 01

• if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
ForwardB = 01

71

Datapath with Forwarding

72

Load-Use Data hazard

73

How to Stall the Pipeline

• Force control values in ID/EX register to 0
• EX, MEM and WB do no p (no-operation)

• Prevent update of PC and IF/ID register
• Using instruction is decoded again
• Following instruction is fetched again

• 1-cycle stall allows MEM to read data for 1w
• Can subsequently forward to EX stage

74

Stall/Bubble in the Pipline

75

Stall/Bubble in the Pipline

76

Load-Use Hazard Detection

• Check when using instruction is decoded in ID stage

• ALU operand register numbers in ID stage are given by

• IF/ID.RegisterRs, IF/ID.RegisterRt

• Load-use hazard when

• ID/EX.MemRead and

((ID/EX.RegisterRt = IF/ID.RegisterRs) or (ID/EX.RegisterRt = IF/ID.RegisterRt))

• If detected, stall and insert bubble

77

Datapath with Hazard detection

78

Stalls and Performance

• Stalls reduce performance
• But are required to get correct results

• Compiler can arrange code to avoid hazards and stalls
• Requires knowledge of the pipeline structure

79

Branch Hazards

• If branch outcome determined in MEM

80

Reducing Branch Delay

• Move hardware to determine outcome to ID stage
• Target address adder
• Register comparator

• Example: branch taken

81

Example: Branch taken

82

Example: Branch taken

83

Data Hazards for Branches

• If a comparison register is a destination of 2nd or 3rd preceding ALU
instruction

• Can resolve using Forwarding

84

Data Hazards for Branches

• If a comparison register is a destination preceding ALU instruction or
2nd preceding load instruction

• Need 1 stall cycle

85

Data Hazards for Branches

• If a comparison register is a destination immediately preceding load
instruction

• Need 2 stall cycles

86

Fallacies

• Pipelining is easy (!)
• The basic idea is easy
• The devil is in the details

• e.g., detecting data hazards

• Pipelining is independent of technology
• So why haven’t we always done pipelining?
• More transistors make more advanced techniques feasible
• Pipeline-related ISA design needs to take account of technology trends

• e.g., predicated instructions

87

Concluding Remarks

• ISA influences design of datapath and control

• Datapath and control influence design of ISA

• Pipelining improves instruction throughput using parallelism
• More instructions completed per second
• Latency for each instruction not reduced

• Hazards: structural, data, control

• Multiple issue and dynamic scheduling (ILP)
• Dependencies limit achievable parallelism
• Complexity leads to the power wall

88

